On Q-spectral integral variation

نویسندگان

  • Maria Aguieiras A. de Freitas
  • Renata R. Del-Vecchio
  • Nair Maria Maia de Abreu
  • Steve Kirkland
چکیده

Let G be a graph with two non adjacent vertices and G′ the graph constructed from G by adding an edge between them. It is known that the trace of Q′ is 2 plus the trace of Q, where Q and Q′ are the signless Laplacian matrices of G and G′ respectively. So, the sum of the Q′-eigenvalues of G′ is the sum of the the Qeigenvalues of G plus two. It is said that Q-spectral integral variation occurs when either only one Q-eigenvalue is increased by two or two Q-eigenvalues are increased by 1 each one. In this article we present some conditions for the occurrence of Q-spectral integral variation under the addition of an edge to a graph G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Scheme for Solving Fuzzy Volterra Integral Equations of First Kind

This paper discusses about the solution of fuzzy Volterra integral equation of first-kind (F-VIE1) using spectral method. The parametric form of fuzzy driving term is applied for F-VIE1, then three classifications for (F-VIE1) are searched to solve them. These classifications are considered based on the interval sign of the kernel. The Gauss-Legendre points and Legendre weights for arithmetics ...

متن کامل

A Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations

This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.

متن کامل

Variation and Rough Path Properties of Local Times of Lévy Processes

R\{0} (|y| 3 2 ∧1)n(dy) < ∞, and is a rough path of roughness p a.s. for any 2 < p < 3 under a slightly stronger condition for the Lévy measure. Then for any function g of finite q-variation (1 ≤ q < 3), we establish the integral ∫∞ −∞ g(x)dLxt as a Young integral when 1 ≤ q < 2 and a Lyons’ rough path integral when 2 ≤ q < 3. We therefore apply these path integrals to extend the Tanaka-Meyer f...

متن کامل

Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...

متن کامل

Local Time Rough Path for Lévy Processes

In this paper, we will prove that the local time of a Lévy process is a rough path of roughness p a.s. for any 2 < p < 3 under some condition for the Lévy measure. This is a new class of rough path processes. Then for any function g of finite q-variation (1 ≤ q < 3), we establish the integral ∫∞ −∞ g(x)d L x t as a Young integral when 1 ≤ q < 2 and a Lyons’ rough path integral when 2 ≤ q < 3. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2009